Adducts of Tin(IV) Tetrahalides with Neutral Lewis Bases. II. Quantitative Study of the *Cis-Trans* **Equilibria by NMR**

S. J. RUZICKA* and A. E. MERBACH

Institut de Chimie Minérale et Analytique, Université de Lausanne, CH-1005 Lausanne, Switzerland Received August 20,1976

The cis-trans *equilibria of SnX₄*.2L and *SnX4*L-L adducts in solution were studied quantitatively by* ¹⁹*F*, ³¹*P* and ¹*H* NMR spectroscopy ($X =$ *F, Cl, Br; L = Me₂O, Et₂O, Me₂S, Et₂S, Me₂Se,* $MeCN$, Me ₃CCN, Me ₂CO, TMPA, Me ₂N(MeO)₂PO, *HMPA;* $L-L = (MeOCH₂-1/2)$ *. The relative stabilities for* cis- *and* trans-SnX4*2L *adducts were estimated, and the following sequence obtained: HMPA >* $Me₂N(MeO)₂PO > TMPA > Me₂Se > Me₂S > Me₂O.$ The existence of $SnCl₄·L_a·L_b$ mixed species when tin *tetrachloride is present with two different ligands has been shown, and their concentrations at equilibrium obey a statistical distribution. The* cis-trans *isomerization constant is relatively independent of temperature, but depends strongly on solvent polarity, the* trans *isomer being favoured in weakly polar media The trends in the isomerization constants as a function of substitution of the ligand and the halogen is discussed on the basis of tin(W) orbital overlap.*

Introduction

In the previous paper in this series [1] we determined the structure of numerous 1:2 $SnX₄·2L (X =$ Cl, Br) solid adducts by vibrational spectroscopy. We demonstrated that the majority of them undergo *cis-trans* equilibrium in solution. Several 19F NMR studies have also shown the existence of *cis-trans* equilibria for $SnF_4.2L$ adducts with ligands such as pyridine oxides and substituted quinolines [2], ethanol [3], or anionic ligands in mixed halide adducts [4]. In order to determine the parameters which affect these equilibria *(i.e.* solvent polarity, temperature, nature of the ligand L donor atom and of the halogen, steric hindrance), we have choosen Nuclear Magnetic Resonance as a technique for quantitative studies of these equilibria.

Experimental

Work in inert atmosphere and purification of chemicals have been reported previously $[1]$. Me₂N- $(MeO)₂PO$ has been synthesized from $H(MeO)₂PO$ (prepared from PCl_3 and MeOH [5]) and Me₂NH [6]. Tin tetrafluoride (ROC/RIC 95%) was used without further purification.

Spectral Measurements

Chemical shifts downfield from the reference signal have been assigned positive signs. The following reference substances were used: tetramethyllane (TMS) for 'H NMR, fluorotrichloromethan $CFC1₃$) for ¹⁹F NMR and 62.5% phosphoric acid in a capillary in the NMR tube for ³¹P NMR.

'H NMR spectra were recorded on a Bruker WP-60 spectrometer. ³¹P{¹H} NMR and ¹⁹F NMR spectra were obtained on a Bruker HX-90 spectrometer operating in the pulsed Fourier transform mode, at 36.44 and 84.67 MHz, respectively. Temperature was stabilized with a Bruker BST-lOO/- 700 unit, and measured with a Hewlett-Packard 2802A digital thermometer.

Abbreviations

 $TMPA = trimethylphosphate, HMPA = hexame$ thylphosphortriamide, DME = $1,2$ -dimethoxyethane.

Results

The 'H NMR spectrum for a *cis-trans* isomerization, with an excess of ligand, should show resonances for *cis, trans* and non bonded ligand. Moreover, ligand protons may couple with tin 115, 117 and 119 isotopes (I = $\frac{1}{2}$, natural isotopic abundance = 0.35, 7.67 and 8.68% respectively). Isomerization and ligand exchange reactions may be fast at room temperature so that the exchanging species cannot be distinguished from one another; the rate of these reactions can be decreased by lowering the temperature and the different species present can then be observed. All spectra were recorded in the limit of slow exchange. It is observed in these systems that increasing the

^{*}Abstracted, in part, from the Ph.D. Thesis No. 237 of S. J. Ruzicka, Swiss Federal Institute of Technology, Lausanne, 1976.

	$SnCl4$ $2L$								$SnBr_4.2L$					
	Me ₂ O	Me ₂ S	Me ₂ Se	DME ^b	TMPA	HMPA	MeCN	Me ₂ CO	Me ₂ S	Me ₂ Se	DME ^b	TMPA	Me ₂ N(MeO) ₂ PO ^c	HMPA
$trans-SnX4$ -2L														
	4.05													2.79 0.18
	0.72	$\frac{2.73}{0.61}$	2.68 0.67		4.09 0.29	2.74 0.14						$\begin{array}{c} 4.10 \\ 0.33 \end{array}$	$\begin{array}{c} 4.00 \\ 0.20 \end{array}$	
$(1H-119Sn)$	18.4	57.3	60.5											
\vec{h} ¹¹⁷ Sn)	17.0	54.9	57.5						2.64 0.50 57.8 55.0	2.58 0.57 59.7 57.3				
$\mathbf{q}_{\mathrm{f}} \epsilon^{-\mathrm{H}^{\mathrm{I}} \mathrm{J}}$					12.0	9.7						11.9	12.1	10.1
$cis-SnX_4 \cdot 2L$														
	3.92	2.67	2.64		4.04						3.90	4.05	3.93	2.74 0.14
	0.59	0.55	0.63	3.98	0.24	2.72 0.12	2.64 0.52	2.81 0.57			0.73	0.26		
$J(1H-119Sn)$	18.4	52.8	52.0 49.0	20.6					2.56 2.44 5.24 49	2.53 0.52 50.4 48.0	22.2			
$J(^1H-^{117}Sn)$	17.0	50.5						$\overline{}$						
$3J(^1H^{-31}P)$					11.9	10.1						11.8	12.3	9.9
Stoichiometry ^a	2.12:1	2.11:1	2.07:1	0.98:1	1.96:1	1.88:1	1.92:1	1.84:1	1.93:1	1.98:1	0.92:1	2.08:1	1.95:1	
$K_{\mathbf{iso}}$	0.64	0.79	1.37	$\frac{0}{250}$	$\frac{0.25}{230}$	$\frac{1.46}{230}$	$\frac{0}{170}$	0.001	1.38 170	2.33 180	$\frac{0}{200}$	0.15	0.35	2.00:1
T(K)	175	190	190									203	203	203
aSnX4.L-L for the bidentate DME.													P Values reported for CH ₃ groups; for CH ₂ : $\delta = 4.26$, $\Delta \delta = 0.69$, $\frac{3}{2}$ = 20.1 (SnCl ₄ · DME) and $\delta = 4.25$, $\Delta \delta = 0.54$, $\frac{3}{2}$ = 21.8 (SnBr ₄ · DME).	
"All values reported for OMe groups.				^d [bonded ligand]/[SnX ₄]										

Figure 1. ¹H NMR spectra (60 MHz) at 275 K of SnBr₄/HMPA (1:4) in CHCl₃, CH₂Cl₂ and CH₂Cl₂/MeNO₂ (3:1). [SnBr₄*2H- MPA] = 0.1 *m*. Internal reference: TMS.

TABLE II. Solvent Dielectric Constant Effect on the Isomerization Constant (K_{iso}) for SnBr₄ • 2HMPA, by ¹H NMR, and the Ratios of the *Trans/Cis* Raman Band Intensities at 298 K.

temperature first leads to the coalescence of the *cis* and the non bonded ligand signals and then to the coalescence of the *trans* signal with the *cis*-free ligand collapsed peak. For all of our $SnX_4^{\bullet}2L$ and $SnX_4 \cdot L-L$ adducts $(X = Cl, Br; L = MeCN, Me_2CO,$ $Me₂O$, $Me₂S$, $Me₂Se$, TMPA, $Me₂N(MeO)₂PO$, HMPA; L-L = $(MeOCH_2-\lambda)$ we have calculated the stoichiometry, defined as the ratio of bonded ligand to metal halide, from the known concentrations of metal and ligand and from the integration of free and bonded ligand signals, including the signals due to ligandtin coupling. The isomerization constant K_{iso} , defined as the ratio $[trans-SnX_4 \cdot 2L]/[cis-SnX_4 \cdot 2L]$, is obtained by integration of the NMR resonances. Stoichiometries, isomerization constants and NMR data are reported in Table I.

Adducts with Phosphorylated Ligands

The ¹H NMR spectrum of $SnBr_4^{\bullet}$ -2HMPA with an excess of HMPA shows three doublets at 275 K in $CH₂Cl₂$ (the doubling is due to coupling with ^{31}P). The doublet centered at 2.60 ppm is assigned to the free ligand. The two remaining doublets at low field

can be assigned to the *cis* and *trans* isomers of the 1:2 adducts: their relative intensities are independent of the free ligand concentration and 1:2 overall stoichiometry is established for these species. This system was studied in CHCl₃, CH₂Cl₂ and CH₂Cl₂/MeNO₂ 3:1, and shows a strong variation in the intensities ratio for complexed ligand signals (Figure 1). Comparing these ratios with those obtained by vibrational spectroscopy (Table II), one can assign the low field signal (2.79 ppm) to the *trans* adduct, and the higher field signal (2.74 ppm) to the *cis* one. A weak new signal appears with increasing solvent polarity; it may be due to the formation of ionic species*. The isomerization constant varies from 0.85 (275 K) to 1.04 (203 K) and the following enthalpy and entropy of isomerization can be calculated: $\Delta H_{iso}(SnBr_4^{\bullet-})$ $2HMPA$) = -0.3 ± 0.3 Kcal/mol and $\Delta S_{iso}(SnBr_4.2H MPA$) = -1.4 ± 1.2 cal/^omol. When the temperature is increased to 300 K, one observes the coalescence of the signals of free and *cis* ligands, leaving the *trans* signal unaffected.

In the following ¹H NMR spectra of $SnX_4.2L$ adducts, the *cis* and *trans* signals were assigned, whenever possible, from the vibrational data of our previous paper. In all cases the *trans* signal appears at lower field than the *cis* one.

The spectrum of SnC14*2HMPA also shows the *cis* and *trans* isomers. When the temperature is lowered to 190 K, one observes an appreciable broadening (\sim) Hz) for bonded ligand signals only. By analogy to data obtained in sulfur donor ligand-platinum complexes [8], one may interprete this broadening to be due to an inversion reaction for the oxygen electronic pairs. The isomerization constant varies

^{*}Turin [7] established by NMR and conductivity measurements the following equilibrium in $CH₃NO₂$: TiCl₄+2HMPA + HMPA \rightleftharpoons [TiCl₃ · 3HMPA]⁺ + Cl⁻.

Figure 2. ¹⁹F NMR spectrum (84.67 MHz) showing the *cis-trans* equilibrium of SnF₄+2TMPA at 173 K in CH₂Cl₂. [SnF₄+2TM-A] \approx 10 \textdegree m, [TMPA] = 0.3 m. Internal reference: CFCl₃. ans-SnF₄ • 2TMPA: a) 'J(¹⁹F-¹¹⁹Sn) = 1700 Hz, and b) 'J(¹⁹F-¹¹⁹Sn) = 1620 Hz. cis-SnF₄.2TMPA: F_{α} *cis* to L, and F_{β} *trans* to L.

from 1.46 (230 K) to 1.33 (293 K) and the following thermodynamic parameters have been calculated: $\Delta H_{iso}(SnCl_4 \cdot 2HMPA) = -0.2 \pm 0.4$ Kcal/mol and $\Delta S_{\text{iso}}(\text{SnCl}_4 \cdot 2\text{HMPA}) = -0.1 \pm 3 \text{ cal/}^{\text{o}}\text{mol}.$

The isomerization constant has been determined at 230 K for $SnCl₄$ 2TMPA in $CH₂Cl₂$ and $CHCl₃$ where the values of K_{iso} are 0.25 and 0.79 respectively. The ¹H NMR spectrum of SnBr₄ 2TMPA shows at 203 K in CH₂Cl₂ nearly only the *cis* isomer (K_{iso} = 0.15); this explains why the *trans* isomer was not observed in the Raman spectra [11.

The ¹⁹F NMR spectrum of $SnF₄$ 2TMPA is shown in Figure 2. In the *trans* isomer, all fluorines are equivalent and a singlet should be observed, while for the *cis* one two different types of fluorines (F_α and F_β) are present, and two equal intensity triplets should be observed. Our spectrum shows a singlet at -151 ppm, assigned to the *trans* isomer and two triplets at -149 and -162 ppm assigned to the *cis* isomer. Coupling between the fluorines in the *trans* isomer and tin isotopes is also observed. The triplet at -149 ppm has been assigned to the F_g *cis* fluorines, on the basis of a weak splitting of this triplet arising from $^{19}F-^{31}P$ coupling. This type of coupling has been clearly demonstrated in octahedral TaF₅.TMPA [9] where the $3J$ coupling constant between the axial fluorine and the ligand phosphorus is 7 Hz, while no coupling of this type was observed for the equatorial fluorines.

The ${}^{31}P{^1H}$ NMR spectra have been run for Sn- $Cl_4/TMPA$, $SnCl_4/Me_2N(MeO)_2PO$ and $SnCl_4/$ - $TMPA/Me₂N(MeO)₂PO$ in $CH₂Cl₂$ at 203 K. The data

are reported in Table III. In the latter system, in addition to the cis- and trans- $SnCl₄·2L$ signals, one observes new signals due to the *cis*- and trans-SnCl₄ ... $TMPA·Me₂N(MeO)₂PO$ mixed adducts. The assignments, shown in Figure 3, are based on the known chemical shifts of *cis*- and *trans*-SnCl₄ . 2L species and on the fact that the signal intensity for cis- and *trans-* $SnCl₄·L_a·L_b$ species must be equal for both L_a and L_b ligand resonances.

In order to determine the relative stability onstants $K_{a,b}^L$ for these i-SnCl₄ 2L adducts, the following equilibria and equilibrium constants have been considered (where L_a is $Me₂N(MeO)₂PO$ and L_b is TMPA):

trans-SnX₄·2L_b + 2L_a
$$
\longrightarrow
$$
 trans-SnX₄·2L_a +
+ 2L_b K_{a,b}¹ (1)
cis-SnX₄·2L_b + 2L_a \longrightarrow cis-SnX₄·2L_a +

$$
+2L_b \t\t\t K_{a,b}^c \t\t (2)
$$

trans-SnX₄
$$
\cdot
$$
 2L_b + trans-SnX₄ \cdot 2L_a \longrightarrow

$$
2trans\cdot SnX_4 \cdot L_2 \cdot L_b
$$
\n
$$
cis\text{-}SnX_4 \cdot 2L_b + cis\text{-}SnX_4 \cdot 2L_3 \longrightarrow
$$
\n
$$
(3)
$$

$$
2cis \cdot SnX_4 \cdot L_2 \cdot L_b \qquad K_m^c \qquad (4)
$$

 $cis-SnX_4 \cdot 2L_3 \longrightarrow trans-SnX_4 \cdot 2L_3$

$$
K_{\text{iso}}^a \qquad (5)
$$

TABLE III. ³¹P ^{{1}H} NMR (36.44 MHz) Data for SnCl₄ · 2TMPA, SnCl₄ · 2Me₂ N(MeO)₂PO and the System SnCl₄/TMPA/Me₂N- $(MeO)_2$ PO: Chemical Shifts (ppm) $\delta(SnCl_4 \cdot 2L)$ and $\delta'(SnCl_4 \cdot L_2 \cdot L_b)$, Differences in Chemical Shift $\Delta \delta = \delta(SnCl_4 \cdot 2L) - \delta(L)$ and $\Delta \delta' = \delta(SnCl_4 \cdot L_3 \cdot L_b) - \delta(L)$, Coupling Constants (Hz), Stoichlometry and K_{iso}, in CH₂Cl₂, at 203 K. External reference: H₃PO₄ 62.5%.

	(MeO) ₃ PO	(MeO) ₃ PO	Me ₂ N(MeO) ₂ PO	Me ₂ N(MeO) ₃ PO
$[M]$ _{total}	0.1	0.075	0.075	0.075
$[L]$ total	0.4	0.435	0.187	0.3
Trans-adduct				
δ	-6.81	-6.93	5.34	5.24
$\pmb{\delta}$ '		-7.05	5.52	
Δδ	-8.46	-8.58	-7.86	-7.96
$\frac{\Delta \delta'}{2 J(^{31}P-^{119}Sn)}$		-8.70	-7.68	
	195			194
$2J(^{31}P-^{117}Sn)$	186			188
Cis-adduct				
δ	-7.58	-7.68	4.79	4.72
δ'		-7.73	4.79	
$\Delta \delta$	-9.23	-9.33	-8.41	-8.48
		-9.38	-8.41	
$\frac{\Delta \delta'}{2 J(^{31}P-^{119}Sn)}$	146			141
$2J(^{31}P-^{117}Sn)$	139			135
Stoichiometry	1.9:1			2.2:1
K_{iso}	0.24			0.49

TABLE IV. Relative Intensities (%) for the ${}^{31}P[{^1}H]$ NMR Signals for cis- and trans-SnCl₄ . 2L and SnCl₄ . L_a . L_b Species in the System SnCl4/TMPA/Me₂N(MeO)₂PO (concentrations, cf. Table III), at 203 K in CH₂Cl₂.

^aThe integration for each signal alone was not possible; the relative intensity for the *cis*-SnCl₄ • 2TMPA adduct was obtained from K_{iso} (TMPA) (see Table III), and the other was then deduced by difference. Kiso(TMPA) (see Table III), and the other was then deduced by difference. $(Me₂N(MeO)₂PO).$

$$
cis\text{-}SnX_4\text{-}2L_b \xrightarrow{\text{trans}} \text{trans}\text{-}SnX_4\text{-}2L_b
$$

\n
$$
K_{iso}^b
$$

\n
$$
cis\text{-}SnX_4\text{-}L_a\text{-}L_b \xrightarrow{\text{trans}} \text{trans}\text{-}SnX_4\text{-}L_a\text{-}L_b
$$

\n(6)

 $K_{\rm iso}^{\rm m}$ (7)

Most of the intensities for the ³¹P NMR signals* could be integrated in the $SnCl₄/TMPA/Me₂N$. $(MeO)₂PO$ system and are reported in Table IV. The following equilibrium constants were determined from the relative area measurements:

 $K_{a,b}^{t}$ = 1900 and $K_{a,b}^{c}$ = 935 K_{m}^{t} = 3.2 and K_{m}^{c} = 5.0, and K_{iso}^{m} = 0.28.

The formation constants for the mixed adducts, K_m^i , are close to the value of 4.0 which would be obtained for a statistical distribution.

In the case of $SnX_4/L_2/L_5$ systems where the concentrations of the i- SnX_4 2L species cannot be determined independently from those of mixed i-SnX₄ · L_a · L_b species, the relative stability constant can however be estimated. If I_a^i and I_b^i are the total relative intensities for the isomer i present as $i-SnX_4$. $2L_a$ and i-Sn X_4 L_a L_b , and i-Sn X_4 $2L_b$ and i-Sn X_4 \cdots L_a . L_b respectively, one may write:

^{*}It has been shown [10] that the Nuclear Overhauser Effect (NOE) is relatively unimportant when protons are
not directly bonded to ^{31}P .

TABLE V. Relative Intensities \mathcal{C}_{θ} for the ¹H NMR Signals for $SnX_4/L_a/L_b$ Systems and Estimated Relative Stability Constants $K_{a,b}^{i}$ for the Adducts i-Sn X_4 2L in CH₂Cl₂ $(-210 K).$

	I_L			I_L^c I_L $K_{a,b}^t$ $K_{a,b}^c$	
SnCl ₄ L _a = Me ₂ Se ^a	20.5	16.7 8.6		8.5	4.7
L_h = Me ₂ S ^a	16.3	17.9 20.0			
SnBr ₄ L _a = TMPA ^b	5.4	39.7 15.6			6.1
$L_h = Me_2Se^C$ 7.0			16.4 15.9	0.6	
$SnBr_4 L_a = Me_2Se^d$	27.9	14.1	4.7		
$L_h = Me_2S^d$	17.4	11.7 24.2		69	39

^aI^t_L and (I^c_L + I_L) determined at 245 K, I_L at 173 K; then $I_{\text{L}}^{\text{c}} = (I_{\text{L}}^{\text{c}} + I_{\text{L}}) - I_{\text{L}}$. b_I^t, I^c and I_L determined at 181 K. $I_{\text{Me}_2\text{Se}}$ and $I_{\text{Me}_2\text{Se}}^{\text{L}}$ Me, Se $\mathbf{I}_{\mathbf{M}\mathbf{e}}^{\mathbf{e}}$ $\mathbf{e}_{\mathbf{e}}$ are obtained at 181 K; etermined at 226 K and I_{Me}^c se then obtained by ifference. ${}^{64}I_{L}$ obtained at 184 K; at 205 K, $(I_{L}^{c} + I^{+})$ is determined and I_L^c obtained by difference; at 298 K, $(I_L^t$ + I_{L}^{c} + I_{L}) is obtained and I_{L}^{t} deduced.

$$
n_a(a^1 + m/2) \propto I_a^1,\tag{8}
$$

$$
n_b(b^1+m/2) \propto I_b^1,\tag{9}
$$

where a^i = [i-SnX₄ \cdot 2L_a], b^i = [i-SnX₄ \cdot 2L_b], m = $[i-SnX_4 \tcdot L_2 \tcdot L_b]$ and n_a , n_b = multiplicity of the nucleus under observation in the ligands La and L_b , respectively.

The relative stability constants for equation (1) or (2) can be obtained, if $c^i = (a^i/b^i)^{1/2}$ is known:

$$
K_{a,b}^{i} = (c^{i})^{2} \frac{\left[L_{b}\right]^{2}}{\left[L_{a}\right]^{2}}
$$
 (10)

Dividing equation (8) by equation (9), substituting m by its value obtained from equation (3) or (4), and solving for the positive root of c, we have:

$$
c^{i} = \frac{1}{4} (K_{m}^{i})^{1/2} \left(\frac{I_{a}^{i} n_{b}}{n_{a} I_{b}^{i}} - 1\right) + \frac{I_{a}^{i} n_{b}}{16} \left(\frac{I_{a}^{i} n_{b}}{n_{a} I_{b}^{i}} - 1\right)^{2} + \frac{I_{a}^{i} n_{b}}{n_{a} I_{b}^{i}}\right)^{1/2}
$$
(11)

In our hypothesis, K_m^1 cannot be determined, and we shall take as an approximation that it equals the statistical value of 4.0, as the observed values in $SnCl₄/TMPA/Me₂N(MeO)₂PO$ frame this value. Equation (11) then reduces as $c^i = I_a^i$ $n_b/n_a I_b^i$, and substituting c^1 in equation (10), one obtains:

$$
K_{a,b}^{i} = \left(\frac{I_a^{i} \cdot I_b}{I_b^{i} \cdot I_a}\right) [2]
$$
 (12)

where I_a and I_b are the relative intensities of the free ligands L_a and L_b .

In the case where the difference in stabilities is so great that only one $SnX_4 \cdot 2L$ adduct is formed, one can just write a stability sequence. The ${}^{1}H$ NMR spectra for $SnCl_a/HMPA/TMPA$ in a 1:2.2:6 ratio, and $SnBr_{4}/HMPA/TMPA$ (1:2.2:5) only show the formation of the adduct with HMPA, leaving TMPA uncomplexed. One may then write the following stability sequence :

 $SnX_4 \cdot 2HMPA \gg SnX_4 \cdot 2TMPA$ (X = Cl, Br)

Adducts with Dialkylchalcogen Ligands

The ¹H NMR spectra for $SnCl₄$ and $SnBr₄$ adducts with *dimethylchalcogen* (Me₂O, Me₂S, Me₂Se) all show the resonances for *trans, cis* and free ligand in order of decreasing chemical shifts, except for SnBr4 with $Me₂O$. In this latter system, it has been shown by vibrational spectroscopy [l] that only a small amount of adduct is formed at room temperature. At 180 K, the 1 H NMR spectrum shows a weak signal at 4.07 ppm which would correspond to 6% of complex formation if a 1:2 adduct is formed; a second intense signal is observed at 3.57 ppm, and corresponds to the coalescence of free ligand $(\delta_{\text{Me}_2O} = 3.33$ ppm) with some other bonded ligand signals.

Various studies have been concerned with $J(^1H^{-119,117}Sn)$ coupling constants in Me_{4-n}SnL_n complexes ($L = X$, SMe, SeMe, NMe₂) [11]. The dependence of ²J coupling constants on the electronic distribution on the $Sn-C-H$ bonds as well as the geminal angle between the $Sn-C$ and $C-H$ bonds have been demonstrated. The values for $3J$ constants anged from 37.7 to 51.7 Hz for $L = SMe$ and SeMe. A few $\frac{4J(^{1}HCCO^{119,117}Sn)}{2}$ coupling constants have been reported for tin(W) octahedral complexes with values around 7 Hz $[12, 13]$. In SnX₄ \cdot 2L, the ³J coupling constants are slightly greater in *trans* adducts than in *cis* ones. Their values for the dimethyloxide adduct are about 18 Hz, while they amount to about 50 Hz for the dimethylsulfide and selenide adducts.

The isomerization constants K_{iso} increase from $Me₂O$ to $Me₂S$ and $Me₂Se$. They weakly depend on temperature; for $SnCl₄·2Me₂S$, the following values 0.79 (190 K), 0.74 (240 K) and 0.72 (260 K) allow the determination of the isomerization thermodynamic parameters: $\Delta H_{iso}(SnCl_4 \cdot 2Me_2S)$ = -0.13 ± 0.4 kcal/mol and $\Delta S_{iso}(SnCl_4 \cdot 2Me_2S)$ = $-1.1 \pm 3 \text{ cal} /^{\circ}$ mol.

The relative stability constants have been quantitatively estimated for $SnX_4/Me_2Se/Me_2S$ and $SnBr_4/-R_2S$ TMPA/Me,Se using equation (12). Their values as well as the results for the $¹H NMR$ signal integrations</sup> are reported in Table V. Even if these integrations were obtained at different temperatures, our estimations can reasonably be accepted, as has been shown in MX_s . L adducts [14] that the relative stability constants are quite temperature independent. For $SnX₄/Me₂S/Me₂O$ and $SnCl₄/TMPA/Me₂Se$, only an order of magnitude for the relative stabilities could be determined.

The ¹H NMR spectrum of $SnCl₄·2Et₂S$ in CH₂- $Cl₂$ shows at 183 K three quadruplets for methylene protons, while methyl protons have resonances too close for the different species to be distinguished. On the basis of our vibrational results $[1]$, where a αs *trans* equilibrium was demonstrated, one can assign the low field quadruplet at 3.40 ppm to the *trans* isomer, the 3.05 ppm one to the *cis* isomer and the 2.54 one to the free ligand. The stoichiometry and the isomerization constant could not be determined as the quadruplet signals are partially superimposed.

The ¹H NMR spectrum for $SnCl₄·2Et₂O$ in $CH₂·$ $Cl₂$ at 213 K shows at 4.46 ppm a quadruplet assigned to the *trans* isomer, and at 3.72 ppm a second sharp quadruplet. At 175 K this latter signal broadens, indicating a slower exchange between free ligand with another form of bonded ligand. These results can be compared to the vibrational data at room temperature, where the *trans* isomer was found in presence of other complexed species.

The ¹H NMR spectra for both $SnX_4 \cdot (MeOCH_2^+)$, adducts $(X = Cl, Br)$ confirm a 1:1 stoichiometry and only show the presence of one complexed species, assigned to the *cis* isomer on the basis of our vibrational results $[1]$. The *cis-free ligand exchange is* slow at the NMR time scale at 253 K for the chloride adduct, and at 203 K for the bromide one, indicating greater lability for the latter one. $3J$ coupling constants between methyl or methylene protons with the tin isotopes correlate well with those obtained in the $SnCl₄·2Me₂O$ adduct. The coordinating ability of the oxygen atoms in $(MeOCH₂)₂$ towards SnBr₄, while very little adduct formation was observed between $Me₂O$ and $SnBr₄$, is evidently explained by the entropy contribution due to the chelate effect.

Adducts with Nitriles and Acetone

¹H NMR spectra at \sim 160 K for SnCl₄ \cdot 2MeCN and $SnCl₄·2Me₂CO$ show only one signal for bonded ligand, assigned to the cis isomer on the basis of our vibrational results [1]. A ⁴J(¹H-^{119,117}Sn) coupling was not observed. This type of coupling has been reported in $SnCl₂(acac)₂$, with values of about 6 Hz [12], probably enhanced by π electron delocalization.

In the SnCl₄.2Me₃CCN spectrum at ~170 K, one only observes a broadened signal at 1.47 ppm due to the fast cis-free ligand exchange, indicating a greater lability for this adduct compared to $SnCl₄·2MeCN.$

Discussion

Relative Stability of $SnX_4 \tcdot 2L$ *Adducts (X = Cl, Br)*

The following stability sequence was obtained from the relative stability constants for the *cis-* and frans-SnX4.2L adducts with dimethylchalcogen ligands: $Me₂Se > Me₂S >> Me₂O$. This sequence is identical to the one for the Sn-L bond strength in *trans-SnX4=2L* adducts determined by vibrational spectroscopy [1]. For *cis*- and *trans*-SnX₄.2L adducts with phosphorylated ligands, the following stability sequence was obtained: HMPA $>$ Me₂N- $(MeO)₂PO > TMPA$. Again, this sequence parallels the one obtained for the Sn-L bond strength from vibrational spectroscopy [l] . Charge localization calculations on the phosphoryl oxygen of the PO group [15], predict the observed sequence of stability constants. Such a behaviour has been observed in Nb- X_5 . L and TaX_5 . L adducts [9]. The following overall stability sequence is obtained when combining the two series above, with the exception that *trans-*SnBr₄*2Me₂Se is more stable than trans-SnBr₄*2TM-PA

 $HMPA > Me₂N(MeO)₂PO > TMPA > Me₂Se >$ $Me₂S$ $>>$ $Me₂O$.

The overall Sn-L bond strength sequence obtained from the known Sn-X force constants **[l] ,** using the inductive model, does not coincide with the stability sequence. In this model, it is assumed that the Sn-X bond becomes weaker as the Sn-L bond becomes stronger, which is a reasonable assumption only in a homologous series. Moreover, as the enthalpies of formation of the adducts are not known, one may realistically question whether or not the free energy parallels the enthalpy. On the basis of their vibrational results, using the inductive model, Ohkaku and Nakamoto [16] proposed the following sequence for the Sn-L bond strength in $trans-SnX_4 \cdot 2L$ adducts: $P(PPh_3) > S(THT) > N(pyr) > O(THF)$. Moreover, they partially confirmed this order of Sn-L force constants for the adducts formed with pyridine and THF, by a normal coordinate analysis.

Mössbauer spectroscopy has also been used for the study of SnX_4 2L adducts [17]. While it has been assumed that the isomeric shift is a sensitive probe of the strength of the Sn-L interaction, no sequences have been deduced from the experimental data.

Figure 3. ³¹P{¹H}NMR spectrum (36.44 MHz) at 203 K in CH₂Cl₂ of SnCl₄/Me₂N(MeO)₂PO/(MeO)₃PO (1:2.5:5.8). [SnCl₄] = 0.075 m, external reference: H_3PO_4 62.5%. With the following assignments:

 $1 = Me_2N(MeO)_2PO$, $2 = trans-SnCl_4 \cdot 2Me_2N(MeO)_2PO$, $3 = cis-SnCl_4 \cdot 2Me_2N(MeO)_2PO$, $4 = (MeO)_3PO$, $5 = trans-SnCl_4 \cdot 2-2Me_2N(MeO)_2PO$ $(MeO_3PO, 6 = cis-SnCl_4 \cdot 2(MeO)_3PO, 7 = trans-SnCl_4 \cdot (MeO)_3PO \cdot Me_2N(MeO)_2PO, 8 = trans-SnCl_4 \cdot (MeO)_3PO \cdot Me_2N(MeO)_2$ $O, 9 = cis\text{-}SnCl₄*(MeO)₃PO·Me₂N(MeO)₂PO, 10 = cis\text{-}SnCl₄*(MeO)₃PO·Me₂N(MeO)₂PO. Signals a (and b) arise from coupling$ f phosphorus 3,10 (and 6,9) with ''Sn and '''Sn isotopes.

TABLE VI. Isomerisation Constants K_{iso} = $[trans-SnX_4*2L]/[cis-SnX_4*2L]$ for SnX_4*2L Adducts in CH₂Cl₂.

	Me ₂ O	Me ₂ S	Me ₂ Se	TMPA	Me ₂ N(MeO) ₂ PO	HMPA
SnF ₄ ·2L	$\overline{}$	-	\cdots	1.73	$\overline{}$	
SnCl ₄ ·2L	0.64	0.79	1.37	0.24	0.49	1.46
$SnBr_4.2L$	$\overline{}$	1.38	2.33	0.15	0.35	1.04
T(K)	~180	~180	~180	\sim 215	\sim 215	\sim 215

Several UV and IR equilibrium studies have provided formation constants for $1:1$ and $1:2$ tin(IV) tetrahalide adducts with weak donor ligand such as nitriles, esters, ethers and amines [18].

Relative stabilities in $SnX_4.2L$ adducts may be quantitatively discussed using the Hard and Soft Acid and Base concept. Sn^{4+} being classified as hard acid [19], Carty et al. then consider SnCl₄ as hard which agrees with their Mössbauer data $[17]$. Farona $[20]$ also assumes a hard character for SnCl₄. He then compares Ohkaku's and Nakamoto's vibrational results $[16]$ to the HSAB predictions reaching the conclusion that this theory fails for $SnCl₄·2L$ adducts. We shall however consider $SnCl₄$ as a moderately soft acid. The acid softness in metal halides [14] increases when the acid center is bonded to a softer base, as predicted by Jørgensen's symbiotic effect [21]. Since bromide ions are softer than chloride ions, $SnBr₄$ should be softer than $SnCl₄$. Using these arguments, the following sequence for acid-base interaction should be observed for the ligand donor atom [19] : Se $>$ S $>>$ O, in agreement with the sequences we obtained for the stabilities and the Sn-L bond strength in SnBr₄ and SnCl₄ adducts. We could not determine the stabilities of the bromide relatively to the chloride adducts, by the competitive equilibria method, since all $SnCl_nBr_{4-n}2L$ mixed adducts would be formed. However, we have shown that $SnBr₄$ interacts more weakly with hard bases such as $Me₂O$, $Et₂O$, $MeCN$ and $Me₂CO$ than $SnCl₄$ does.

Isomerization Constants

The isomerization constants for the $SnX_4 \tcdot 2L$ adducts in $CH₂Cl₂$ are reported in Table VI. These are relatively temperature independent, as shown by the small $(<0.3$ Kcal/mol) enthalpies of isomerization in $SnBr_4^{\bullet}2HMPA$, $SnCl_4^{\bullet}2HMPA$ or $SnCl_4^{\bullet}$ - $2Me₂S$. However, the isomerization constants vary strongly with solvent polarity, the *trans* isomer being favoured in a weakly polar solvent, as shown in the SnBr4*2HMPA studies.

The arguments used in the literature to rationalize the occurence of one isomer or the other have only been applied to solid adducts, and we have shown [1] that both isomers could be synthesized for $SnCl₄$ \cdot 2-THT by changing the solvent polarity.

Arguments based on steric effects led Beattie [22] to propose that a *cis* adduct would be favoured if the ligands are larger than the halogens. However, Zahrobsky [23], using a stereochemical model based on nonbonded intramolecular interactions, has shown that irrespective of the relative solid angles of the monoatomic ligands in a MA4B2 complex, the *cis* isomer would always be favoured. This also holds in $SnX₄$ ²L adducts, if the substituents in the ligand L do not spread out of the solid angle of the donor atom, which is the case in our ligands. Steric effects can thus not be taken into account to discuss the isomerization constants of our adducts. Other arguments are based on the nature of the Sn-X and Sn-L bonds. From all of these $[22-24]$ we have retained those given by Smith and Wilkins [12], and Drago [25]. In $SnX₄·2L$ octahedral adducts, the overlap of tin(IV) 5s, 5p and 5d orbitals depends on the positive charge on Sn(IV). When two low polarity Sn-L bonds are formed, the tin(IV) d orbitals are too high in energy to be appreciably involved in bonding. In this case, the tin atom then uses the sp_z hybrid orbitals, giving two strong Sn-L bonds *trans* to each other. When the six ligands have comparable electronegativities, a sp^3d^2 hybridization becomes possible, and the molecule adopts the configuration which minimizes the splitting between the $d_{x^2-y^2}$ and d_{z^2} orbitals, namely the *cis* one.

In SnX4*2L adducts with *dimethylchalcogen* ligands, the isomerization constant increases from $Me₂O$ to $Me₂Se$, and from $SnCl₄$ to $SnBr₄$ adducts. Upon adduct formation, the positive charge on Sn(IV) diminishes as the ligand donor atom electronegativity decreases and as the Sn-L bond becomes stronger. One predicts that the tin(IV) d orbitals will be destabilized in going from $Me₂O$ to $Me₂Se$, making $sp³d²$ hybridization more difficult, which favours the *trans* isomer. In going from SnC14 to SnBr4, the effective charge on tin(IV) decreases with the halogen electronegativity. The *trans* adduct is then favoured in bromide adducts compared to chloride ones.

In the series with *phosphorylated* ligands, the isomerization constant increases from TMPA to HMPA, but decreases from SnCl₄ to SnBr₄ adducts. We have shown previously that in $SnX₄$ adducts, the Sn-L bond is stronger for HMPA than for TMPA. In this case, the effective charge on $\text{tin}(IV)$ decreases from TMPA to HMPA, favouring the *trans* isomer. We assumed that the effective charge on $tin(V)$ is higher in SnC14 than in SnBr4. One should thus observe an increase in the isomerization constant going from $SnCl₄$ to $SnBr₄$ adducts. The increase in the isomerization constant for the chlorides over the bromides can only be explained if one assumes that the acid-base interaction with these ligands is stronger in $SnCl₄$ adducts than in $SnBr₄$ ones. The charge on tin(IV) would then be higher in $SnBr_4$ adducts, which favours the *cis* isomer.

Acknowledgments

We are indepted to Mr. P. Meier for the ^{19}F and ³¹P NMR spectra, and to Mr. D. Zbinden for valuable technical assistance. We acknowledge the generous support of the Fonds National Suisse de la Recherche Scientifique, through grant No. 2.476- 0.75.

References

- S. J. Ruzicka and A. E. Merbach, Inorg. *Chim. Acta, 20, 223 (1976).*
- *C.* E. Michelson and R. 0. Ragsdale, Inorg. *Chew,* 9, 2718 (1970).
- E. L. Muetterties, J. *Am. Chem. Sot.,* 82, 1082 (1960). R. O. Ragsdale and B. B. Stewart, Proc. Chem. Soc., 194 (1964).
- P. A. W. Dean and D. F. Evans, J. *Chem. Sot. A, 1154 (1968).*
- R. A. McIvor and G. D. McCarthy, *Can. J. Chem., 34, 1819 (1956).*
- 6 Chemical Abstracts, 52, 8039i (1958); Zhur. Obshchei Khim., 27,3064 (1957).
- E. Turin, Ph.D.thesis in preparation, University of Lausanne.
- E. W. Abel, R. P. Bush, F. J. Hopton and C. R. Jenkins, *Chem. Comm., 58 (1966);* P. Haake and P. C. Turley, J. Am. Chem. Soc., 89, 4611 (1967).
- 9 C. M. P. Favez, H. Rollier and A. E. Merbach, *Helv. Chim. Acta, 59, 2383 (1976).*
- 10 P. L. Yeagle. W. C. Hutton and R. B. Martin. J. *Am.* Chem. Soc., 97, 7175 (1975).
- 11 T. F. Bolles and R. S. Drago, J. *Am.* Chem. Sot., 88, 5730 (1966); J. D. Kennedy and W. McFarlane, *J. Chem. Sot. Dalton, 2134 (1973);* V. S. Petrosyan and 0. A. Reutov, Pure *and Applied Chem., 37, 147 (1974);* M. R. Kula, C. G. Kreiter and J. Lorberth, Chem. Ber., 97, 1294 (1964); J. Lorberth and M. R. Kula, Chem. *Ber.,* 98, 520 (1965); E. V. Van den Berahe. D. F. Van de Vondel and G. P. Van der Kelen, *Inorg. Chim. Acta*, 1, *97 (1967);* E. V. Van den Berghe and G. P. Van der Kelen,J. *Organometal. Chem., 61, 197 (1973).*
- 12 J. A. S. Smith and E. J. Wilkins, *Chem. Comm., 381 (1965).*
- 3 J. Otera, Y. Kawasaki and T. Tanaka, *Inorg. Chim. Acta*, *I, 294 (1967).*
- 14 J.-C. Biinzli and A. E. Merbach, *Helv. Chim. Acta, 55, 580 (1972);* R. Good and A. E. Merbach, *Helv. Chim. Acta, 57, 1192 (1974).*
- 15 E. L. Wagner, J. Am. *Chem. Sot.,* 85, 161 (1963);N. A. Landau, V. V. Shelvchenko and S. S. Dubov, *Dokl. Akud. Nauk. SSSR, 182, 134 (1968).*
- 16 *N.* Ohkaku and K. Nakamoto, *Inorg.* Chem., 12, 2440 (1973).
- 17 A. J. Carty, T. Hinsperger, L. Mihichuk and D. Sharma, *Znorg. Chem., 9, 2573 (1970).*
- 18 D. P. N. Satchel1 and R. S. Satchell, *Chem. Rev., 69, 251 (1969).*
- ibid., 4.5, 643 (1968). 24 C. J. Wilkins and H. M. Haendler, J. *Chem. Sot.,* 3174
- 20 M., *19, 649 (1966).*
1 M. F. Farona, *Inorg. Chem., 14*, 2020 (1975). (1965).
-
-
- *19* R. G. Pearson, J. *Chem. Educ.,* 45, 581 (1968) and 23 R. F. Zahrobsky, *J.* Am. *Chem. Sot.,* 93, 3313 (1971).
	-
- 24 C. 3. WHERE and T. M. Haender, *J. Chem.*, 300., 3114
(1965).
Soc., 91, 1644 (1969).
Soc., 91, 1644 (1969). *22 1.* R. Beattie, Quart. *Rev.,* 17, 382 (1963). Sot., 91, 1644 (1969).